Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2014

A study of GPS ionospheric scintillations observed at Shenzhen

Ionospheric scintillation variations are studied using GPS measurements at the low latitude station of Shenzhen (22.59\textdegreeN,\ 113.97\textdegreeE), situated under the northern crest of the equatorial anomaly region, from the Chinese Meridian Project. The results are presented for data collected during the current phase of rising solar activity (low to high solar activity) from December 2010 to April 2014. The results show that GPS scintillation events were largely a nighttime phenomenon during the whole observation period. Scintillation events mainly occurred along the inner edge of the northern crest of the equatorial anomaly in China. The occurrence of scintillations in different sectors of the sky was also investigated, and the results revealed that it is more likely for the scintillations to be observed in the west sector of the sky above Shenzhen. During the present period of study, a total number of 512 total electron content (TEC) depletions and 460 lock loss events were observed. In addition, both of these events are likely to increase during periods of high solar activity, especially because the strong scintillations are often simultaneously accompanied by TEC depletions and lock losses by GPS receivers.

Huang, Linfeng; Wang, Jinsong; Jiang, Yong; Chen, Zhou; Zhao, Kai;

Published by: Advances in Space Research      Published on: 12/2014

YEAR: 2014     DOI: 10.1016/j.asr.2014.08.023

GPS; Ionospheric scintillation; Scintillation event

GPS L1-Frequency Observations of Equatorial Scintillations and Irregularity Zonal Velocities

In this work, the climatology of ionospheric scintillations at global positioning system (GPS) L-band frequency and the zonal drift velocities of scintillation-producing irregularities were depicted for the equatorial observatory of S\~ao Luis (2.33\textdegreeS; 44.21\textdegreeW; dip latitude 1.3\textdegreeS), Brazil. This is the first time that the hourly, monthly, and seasonal variations of scintillations and irregularity zonal drifts at S\~ao Luis were characterized during periods of different solar activity levels (from December 1998 to February 2007). The percentage occurrence of scintillations at different sectors of the sky was also investigated, and the results revealed that the scintillations are more probable to be observed in the west sector of the sky above S\~ao Luis, whereas the north\textendashsouth asymmetries are possibly related to asymmetries in the plasma density distribution at off-equatorial latitudes. The scintillations on GPS signals occurred more frequently around solar maximum years, but it is also clear from the results of a strong variability in the scintillation activity in the years with moderate solar flux during the descending phase of the solar cycle. The equatorial scintillations occur predominantly during pre-midnight hours with a broad maximum near the December solstice months. In general, weak level of scintillations (S 4 index between 0.2 and 0.4) dominated at all seasons; however, during the winter months around solar maximum years (although the scintillation occurrence is extremely low), stronger levels of scintillations (S 4\ \>\ 0.6) may occur at comparable rate with the weak scintillations. The irregularity zonal velocities, as estimated from the GPS spaced-receiver technique, presented a different scenario for the two seasons analyzed; during the equinoxes, the magnitude of the zonal velocities appeared not to change with the solar activity, whereas during the December solstice months, the larger magnitudes were observed around solar maximum years. Other relevant aspects of the observations are highlighted and discussed.

Muella, Marcio; de Paula, Eurico; Jonah, Olusegun;

Published by: Surveys in Geophysics      Published on: 08/2014

YEAR: 2014     DOI: 10.1007/s10712-013-9252-0

GPS; Ionospheric drifts; ionospheric irregularities; Ionospheric scintillation

2011

Ionospheric scintillations at Guilin detected by GPS ground-based and radio occultation observations

The occurrence of ionospheric scintillations with S4⩾0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.

Zou, Yuhua;

Published by: Advances in Space Research      Published on:

YEAR: 2011     DOI: https://doi.org/10.1016/j.asr.2010.11.016

Ionospheric scintillation; ionospheric irregularities; GPS; GPS-COSMIC radio occultation



  1